The anorexia data contains data on the pre and post treatment anorexia of some young female patients. We will create a new variable wtchange
which is equal to post-weight minus pre-weight.
Treat - Factor of three levels: "Cont" (control), "CBT" (Cognitive Behavioural treatment) and "FT" (family treatment).
Prewt - Weight of patient before study period, in lbs.
Postwt- Weight of patient after study period, in lbs.
data(anorexia) anorexia$wtchange <-anorexia$Postwt - anorexia$Prewt
We will test whether the control group experienced a significant drop in weight.
anorexia.sub<-subset(anorexia,Treat=="Cont") descriptive.table(anorexia.sub[c("wtchange")],func.names =c("Mean","St. Deviation","Valid N")) one.sample.test(variables=c(wtchange), data=anorexia.sub, test=t.test, alternative="two.sided") onesample.plot(variables=c(wtchange),data=anorexia.sub,test.value=0.0,type='box',alpha=1.0) rm(anorexia.sub)
> anorexia.sub<-subset(anorexia,Treat=="Cont") > descriptive.table(anorexia.sub[c("wtchange")],func.names =c("Mean","St. Deviation","Valid N")) $`strata: all cases ` Mean St. Deviation Valid N -0.450000 7.988705 26.000000 > one.sample.test(variables=c(wtchange), + data=anorexia.sub, + test=t.test, + alternative="two.sided") One Sample t-test mean of x 95% CI Lower 95% CI Upper t df p-value wtchange -0.45 -3.676708 2.776708 -0.2872254 25 0.776307 HA: two.sided H0: mean = 0 > onesample.plot(variables=c(wtchange),data=anorexia.sub,test.value=0.0,type='box',alpha=1.0) > rm(anorexia.sub)
The control group lost .45 pounds on average, though this was not a significant drop (p-value = 0.776). Visually we can see from the box and jitter plot that the observations are clustered around 0.0.